This paper considers optimization of distributed detectors under the Bayes criterion. A distributed detector consists of multiple local detectors and a fusion center that combines the local decision results to obtain a final decision. Introduced first are distributional distance measures, the mutual information (MI) and the conditional mutual information (CMI), that are obtained by applying information theoretic concepts to detection problems. Error bound analyses show that these distance measures approximate the Bayesian probability of error better than the conventional ones regardless of the operational environments. Then, a new optimization technique is proposed for distributed Bayes detectors. The method uses the distributional distances instead of the original Bayes criterion to avoid the complexity barrier of the optimization problem. Numerical examples show that the proposed distance measures yield solutions far better than the existing ones.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mutual and conditional mutual informations for optimizing distributed Bayes detectors


    Beteiligte:
    Yong In Han, (Autor:in) / Taejeong Kim, (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    306594 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information

    Runge, Jakob | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2018

    Freier Zugriff

    Liberty Mutual

    Online Contents | 2013


    Mutual benefits

    Clancey, J. P. | British Library Online Contents | 1996


    Mutual illumination

    Forsyth, D. / Zisserman, A. | IEEE | 1989