Lifting-Automated Guided Vehicle (L-AGV) has been widely used in the fourth-generation automated port for its advantages on time-savings. Optimize the port L-AGV scheduling problem has dramatically significant impacts on port working efficiency. An improved Artificial Bee Colony algorithm (IABC) was proposed to greatly solve the problem by introducing ideas of genetic algorithm (GA) and adaptive factors. Compared with original Artificial Bee Colony algorithm (ABC) and GA, IABC made better performances on solutions and convergence, which also provided a direction on decision optimization for port AGV scheduling problem related.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Improved Artificial Bee Colony Algorithm to Port L-AGV Scheduling Problems


    Beteiligte:
    Han, Peixiu (Autor:in) / Sun, Zhuo (Autor:in) / Jing, Xiaotong (Autor:in) / Li, Jinyu (Autor:in)


    Erscheinungsdatum :

    01.07.2021


    Format / Umfang :

    2116111 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    An improved artificial bee colony algorithm for solving parameter identification problems

    You, Xuemei / Ma, Yinghong / Liu, Zhiyuan | British Library Online Contents | 2017


    Improved multi-strategy artificial bee colony algorithm

    Lv, Li / Wu, Lieyang / Zhao, Jia et al. | British Library Online Contents | 2016


    Artificial bee colony algorithm with improved special centre

    Sun, Hui / Wang, Kun / Zhao, Jia et al. | British Library Online Contents | 2016


    An Ant Colony Optimization Algorithm for Shop Scheduling Problems

    Blum, C. / Sampels, M. | British Library Online Contents | 2004


    A Multi-Member Artificial Bee Colony Algorithm for Constrained Optimization Problems

    Wang, X. / Zheng, J. | British Library Online Contents | 2012