This paper explores the application of nonlinear control and reinforcement learning to control a model of X33 reentry vehicle. The control problem is formulated considering the gliding phase of the X33 spacecraft model. During this phase, no thrust is applied and wind disturbances may change the path of the spacecraft from the reference path. Several difficulties were present when using the reinforcement learning controller. The starting of the controller, the convergence of the controller gains and their relation to the excitation noise, and the available time to learn.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinforcement Learning and Nonlinear Control of a X33 Vehicle Model


    Beteiligte:


    Erscheinungsdatum :

    13.07.2022


    Format / Umfang :

    1219354 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Reinforcement learning control of vehicle systems

    BORHAN HOSEINALI / SALEMIAN ABBAS HOOSHMAND / HODZEN EDMUND P | Europäisches Patentamt | 2025

    Freier Zugriff

    REINFORCEMENT LEARNING CONTROL OF VEHICLE SYSTEMS

    BORHAN HOSEINALI / SALEMIAN ABBAS HOOSHMAND / HODZEN EDMUND P | Europäisches Patentamt | 2025

    Freier Zugriff

    REINFORCEMENT LEARNING CONTROL OF VEHICLE SYSTEMS

    BORHAN HOSEINALI / SALEMIAN ABBAS HOOSHMAND / HODZEN EDMUND P | Europäisches Patentamt | 2020

    Freier Zugriff

    Reinforcement and Model Learning for Vehicle Operation

    WRAY KYLE HOLLINS / WITWICKI STEFAN / ZILBERSTEIN SHLOMO | Europäisches Patentamt | 2020

    Freier Zugriff

    Reinforcement learning based ground vehicle control techniques

    TUZI GERTI / MALEKI ALI / HIRZALLAH NABIL H K et al. | Europäisches Patentamt | 2021

    Freier Zugriff