Image interpolation using radial basis function (RBF) neural networks is accomplished. In this work the RBF network is first trained with the given image, satisfying the constraint of the gray value at each pixel. With the desired magnification ratio, each pixel is then divided into subpixels. The subpixel gray values are calculated using the trained network. Two dimensional Gaussian basis functions are used as the neurons in the hidden layer.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    High-fidelity image interpolation using radial basis function neural networks


    Beteiligte:
    Ahmed, F. (Autor:in) / Gustafson, S.C. (Autor:in) / Karim, M.A. (Autor:in)


    Erscheinungsdatum :

    01.01.1995


    Format / Umfang :

    575250 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    High-Fidelity Image Interpolation Using Radial Basis Function Neural Networks

    Ahmed, F. / Gustafson, S. C. / Karim, M. A. et al. | British Library Conference Proceedings | 1995


    Texture image classification using modular radial basis function neural networks

    Chang, C.-Y. / Wang, H.-J. / Fu, S.-Y. | British Library Online Contents | 2010


    Vehicle tracking using radial basis function neural networks

    Bullock,D. / Lousiana State Univ.,US | Kraftfahrwesen | 1996


    Radial Basis Function Interpolation for Computational Aeroacoustics

    Schoder, Stefan / Junger, Clemens / Roppert, Klaus et al. | AIAA | 2020


    Vehicle Tracking using Radial Basis Function Neural Networks

    Bullock, D. | British Library Conference Proceedings | 1996