Accurate trajectory prediction of a lane changing vehicle is a key issue for risk assessment and early danger warning in advanced driver assistance systems(ADAS). This paper proposes a trajectory prediction approach for a lane changing vehicle considering high-level driver status. A driving behavior estimation and classification model is developed based on Hidden Markov Models(HMMs). The lane change behavior is estimated by observing the vehicle state emissions in the beginning stage of a lane change procedure, and then classified by the classifier before the vehicle crosses the lane mark. Furthermore, the future trajectory of the lane changing vehicle is predicted in a statistical way combining the driver status estimated by the classifier. The classifier is trained and tested using naturalistic driving data, which shows satisfactory performance in classifying driver status. The trajectory prediction method generates different trajectories based on the classification results, which is important for the design of both autonomous driving controller and early danger warning systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Trajectory prediction of a lane changing vehicle based on driver behavior estimation and classification


    Beteiligte:
    Liu, Peng (Autor:in) / Kurt, Arda (Autor:in) / Ozguner, Umit (Autor:in)


    Erscheinungsdatum :

    01.10.2014


    Format / Umfang :

    2944897 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Driver Lane-Changing Behavior Prediction Based on Deep Learning

    Cheng Wei / Fei Hui / Asad J. Khattak | DOAJ | 2021

    Freier Zugriff

    Personalized driver-based anthropomorphic lane changing trajectory optimization method

    CHU HONGQING / SHOWA TAKESHI / GAO BINGZHAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff


    Classification and Prediction of Vehicle Lane-Changing Crash Risk Levels Based on Video Trajectory Data

    Shijie Gao / Lanxin Jiao / Haiyue Wang et al. | DOAJ | 2024

    Freier Zugriff