For a Driving Assistance System dedicated to intersection safety, knowledge about the structure and position of the intersection is essential, and detecting the painted road signs can greatly improve this knowledge. This paper describes a method for detection, measurement and classification of painted road objects that are typically found in European intersections. The features of the painted objects are first extracted using dark light dark transition detection on horizontal line regions, and then are refined using gray level segmentation based on Gaussian mixtures. The 3D bounding box of the objects is reconstructed using perspective geometry. The objects are classified based on a restricted set of features, using a decision tree and size constraints.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detection and classification of painted road objects for intersection assistance applications


    Beteiligte:
    Danescu, Radu (Autor:in) / Nedevschi, Sergiu (Autor:in)


    Erscheinungsdatum :

    01.09.2010


    Format / Umfang :

    628258 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Model Guided Road Intersection Classification

    Ballardini, Augusto Luis / Saz, Alvaro Hernandez / Sotelo, Miguel Angel | IEEE | 2021


    MODEL GUIDED ROAD INTERSECTION CLASSIFICATION

    Ballardini, Augusto Luis / Saz, Álvaro Hernández / Sotelo, Miguel Ángel | British Library Conference Proceedings | 2021


    Intersection Assistance

    Mages, Mark / Klanner, Felix / Stoff, Alexander | Springer Verlag | 2015


    Road intersection detection and classification using hierarchical SVM classifier

    Rebai, Karima / Achour, Nouara / Azouaoui, Ouahiba | Tema Archiv | 2014


    Motorbike intersection assistance

    Berndt,H. / Roessler,B. / Dietmayer,K. et al. | Kraftfahrwesen | 2009