With the rapid progress of autonomous driving and advanced driver assistance systems, there are growing efforts to promote their safety in natural driving scenarios, especially for the detection of the traffic accidents. However, because of the dynamic camera motion and complex scene in driving situations, traffic accident detection is still challenging. In this work, we aim to give the ability of Traffic Accident Detection for driving systems by proposing a Self-Supervised Consistency learning framework, termed as SSC-TAD, that involves the appearance, motion, and context consistency learning. The key formulation is to find the inconsistency of video frames, object locations and the spatial relation structure of scene temporally between different frames captured by the dashcam videos. Within this field, different from the previous works which concentrate on predicting the future object locations or frames, we further focus on predicting the visual scene context in driving scenarios and detecting the traffic accident by considering the temporal frame consistency, temporal object location consistency, and the spatial-temporal relation consistency of road participants. In this work, this formulation is fulfilled by a collaborative multi-task consistency learning network and the visual scene context feature is represented by a graph convolution network. The superiority to the state-of-the-art is verified by exhaustive evaluations on two large scale datasets, i.e., the AnAn Accident Detection (A3D) dataset and DADA-2000 dataset collected recently.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Accident Detection via Self-Supervised Consistency Learning in Driving Scenarios


    Beteiligte:
    Fang, Jianwu (Autor:in) / Qiao, Jiahuan (Autor:in) / Bai, Jie (Autor:in) / Yu, Hongkai (Autor:in) / Xue, Jianru (Autor:in)


    Erscheinungsdatum :

    01.07.2022


    Format / Umfang :

    5696196 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Complexity of Driving Scenarios Based on Traffic Accident Data

    Dong, Xinchi / Zhang, Daowen / Mu, Yaoyao et al. | Springer Verlag | 2024


    Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic Prior

    Rempe, Davis / Philion, Jonah / Guibas, Leonidas J. et al. | ArXiv | 2021

    Freier Zugriff

    Object Detection for Self-Driving Car in Complex Traffic Scenarios

    Das Biplab / Agrawal Pooja | DOAJ | 2024

    Freier Zugriff

    Driving Experience and Simulation of Accident Scenarios

    Berthelon, C. / Nachtergaele, C. / Aillerie, I. | British Library Conference Proceedings | 2008


    Simulation of accident scenarios and driving experience

    Berthelon, Catherine | Online Contents | 2007