The number of automobiles around the world is increasing day by day. With the number of increasing automobiles, there is also a surge in road accidents annually. The primary causes of most of these accidents are drivers’ drowsiness and distraction. Even Today’s Autonomous vehicles need drivers’ attention to avoid accidents at times of emergency or system failure. So a real-time detection of drivers’ drowsiness level plays a pivotal role in reducing road accidents. In this paper, we present two algorithms for performing real-time detection of drivers’ drowsiness levels. The algorithms used are Multi-Contrast Convolution Neural Networks (MC-CNN) and Single Shot Multibox Detector (SSD). Our study can also be extrapolated into various other applications, such as real-time customer satisfaction detection through facial expressions in shopping malls.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-level Drowsiness Detection using Multi-Contrast Convolutional Neural Networks and Single Shot Detector


    Beteiligte:
    Sharan, Sai (Autor:in) / Reddy, Rahul (Autor:in) / Reddy, Preetham (Autor:in)


    Erscheinungsdatum :

    25.06.2021


    Format / Umfang :

    630870 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DROWSINESS DETECTOR AND PROGRAM FOR DROWSINESS DETECTION

    NAGAHASHI KENICHI / SEKI TOSHITAKE | Europäisches Patentamt | 2024

    Freier Zugriff

    DROWSINESS DETECTOR AND PROGRAM FOR DROWSINESS DETECTION

    NAGAHASHI KENICHI / SEKI TOSHITAKE | Europäisches Patentamt | 2024

    Freier Zugriff

    Driver Drowsiness Detection using Convoluted Neural Networks

    Antony, Nihal / KR, Rohit / Patel, Shreya et al. | IEEE | 2019


    Automated Driver Drowsiness Detection from Single-Channel EEG Signals Using Convolutional Neural Networks and Transfer Learning

    Ghadami, Ali / Mohammadzadeh, Mohammad / Taghimohammadi, Mohammadreza et al. | IEEE | 2022


    Prediction of Driver Drowsiness Level Using Recurrent Neural Networks and Multi-Time-Scale Fusion

    Zhou, Xunfei / Kundu, Subrata | British Library Conference Proceedings | 2021