Multisensor image registration is necessary in many applications of remote sensing imagery, the crucial problem is how to establish the correspondence between the features extracted from the reference and input image. Generally, most existing methods only use feature similarity or intensity similarity. In this paper, a coarse-to-refined method, which combines modified scale invariant feature transform (SIFT) feature similarity in coarse matching and cluster reward algorithm(CRA) in refined matching, is developed. To achieve refined registration, two transformation models are used. The experimental results demonstrate that the proposed method is effective and achieves subpixel registration accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Coarse-to-Refined Matching Method for Multisensor Remote Sensing Image Registration


    Beteiligte:
    Yan Guo, (Autor:in) / Ye Zhang, (Autor:in) / Yanfeng Gu, (Autor:in) / Weizhi Zhong, (Autor:in)


    Erscheinungsdatum :

    01.12.2008


    Format / Umfang :

    792388 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Automated Multisensor Image Registration

    Walli, K. | British Library Conference Proceedings | 2004



    Multisensor image registration and optical correlation

    Sheng, Y. / Yang, X. / McReynolds, D. et al. | British Library Conference Proceedings | 1999



    Image Registration for Remote Sensing

    Le Moigne, Jacqueline / Netanyahu, Nathan S. / Eastman, Roger D. | NTRS | 2012