City-wide control and coordination of traffic flow can improve efficiency, fuel consumption, and safety. We consider the problem of controlling traffic lights under fixed and adaptive routing of vehicles in urban road networks. Multicommodity back-pressure algorithms, originally developed for routing and scheduling in communication networks, are applied to road networks to control traffic lights and adaptively reroute vehicles. The performance of the algorithms is analyzed using a microscopic traffic simulator. The results demonstrate that the proposed multicommodity and adaptive routing algorithms provide significant improvement over a fixed schedule controller and a single-commodity back-pressure controller in terms of various performance metrics, including queue length, trips completed, travel times, and fair traffic distribution.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Back-Pressure Traffic Signal Control With Fixed and Adaptive Routing for Urban Vehicular Networks


    Beteiligte:
    Zaidi, Ali A. (Autor:in) / Kulcsar, Balazs (Autor:in) / Wymeersch, Henk (Autor:in)


    Erscheinungsdatum :

    01.08.2016


    Format / Umfang :

    6206694 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    A Reinforcement Learning Based Adaptive Traffic Signal Control for Vehicular Networks

    Krishnendhu, S. P. / Vigneshwari Reddy, Mainampati / Basumatary, Thulunga et al. | Springer Verlag | 2022



    Traffic Signal Adaptive Routing

    Protschky, Valentin / Feld, Sebastian / Walischmiller, Michael | IEEE | 2015