The precise forecasting of vessel paths plays a vital role in enhancing navigation performance, streamlining voyage planning, boosting the efficiency of maritime rescue missions, and maintaining safety at sea. Nontheless, history trajectory and the interaction of different vessels attach great importance on the purpose of predicting the future trajectoy. In order to handle this problem, this paper proposes a self-supervised marine vessel trajectory prediction method. The proposed model can effectively extract the maritime spatial and temporal trajectory features, which can greatly improve the accuracy and rapidity of the trajectory prediction. The maritime dataset from the Singapore waters is used for proving the validation of our model. The experimental results demonstrate that our model largely reduce the average displacement error and final displacement error compared with other models. These advancements will facilitate the generation of precise navigation patterns, reducing navigational path discrepancies while enhancing the precision of anti-collision mechanisms. Such developments thereby strengthen early warning capabilities for maritime traffic conflicts and help mitigate the likelihood of marine incidents through proactive risk management strategies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vessel Trajectory Prediction based on Self-Supervised Learning Methods


    Beteiligte:
    Wu, Hongjie (Autor:in) / Yan, Chenyang (Autor:in) / Qing, Yuhao (Autor:in) / Wang, Yueying (Autor:in)


    Erscheinungsdatum :

    23.05.2025


    Format / Umfang :

    436494 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Self‐supervised vessel trajectory segmentation via learning spatio‐temporal semantics

    Rui Zhang / Haitao Ren / Zhipei Yu et al. | DOAJ | 2024

    Freier Zugriff

    Self‐supervised vessel trajectory segmentation via learning spatio‐temporal semantics

    Zhang, Rui / Ren, Haitao / Yu, Zhipei et al. | Wiley | 2024

    Freier Zugriff

    Self-Supervised Transformer for Trajectory Prediction Using Noise Imputed Past Trajectory

    Bharilya, Vibha / Arora, Ashok / Kumar, Neetesh | IEEE | 2025


    Deep Learning Methods for Vessel Trajectory Prediction Based on Recurrent Neural Networks

    Capobianco, Samuele / Millefiori, Leonardo M. / Forti, Nicola et al. | IEEE | 2021


    Vessel Trajectory Prediction Based on Context-Assisted Information

    Wang, Jianing / Jiao, Lianmeng / Pan, Quan | IEEE | 2024