Vehicular crowdsensing has emerged as an important sensing paradigm in the Internet of Things (IoT), which recruits Intelligent Vehicles to collect data. As its variant, sparse MCS collects data from some sensing areas and infer data for other unsensed areas, addressing the challenge of maintaining high-quality sensing at manageable costs. In practical vehicular crowdsensing scenarios, the diverse requirements of urban applications make it crucial not only to infer data for the current period but also to predict the entire sensing map for the future. This predictive capability not only reduces the cost of sensing but also provides critical data support for various urban applications, including intelligent transportation systems. This paper introduces the Multi-Attention Adaptive Graph Transformer Network (MAAGTN) aimed at improving the accuracy of data inference and prediction in vehicular crowdsensing. We present a novel embedding method that integrates spatial-temporal information of sensing maps into the model. An adaptive learnable graph module and a multiattention module are designed to dynamically capture complex spatial-temporal correlations among data. Furthermore, a dynamic multi-task learning framework is proposed to mitigate error propagation by adjusting task weights during training. Experimental evaluations on real-world datasets demonstrate the superiority of MAAGTN for data inference and prediction.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-Attention Adaptive Graph Transformer Network for Data Inference and Prediction in Vehicular Crowdsensing


    Beteiligte:
    Huang, Shouyu (Autor:in) / Wang, Luhan (Autor:in) / Zheng, Rui (Autor:in) / Huo, Jie (Autor:in) / Wen, Xiangming (Autor:in) / Lu, Zhaoming (Autor:in)


    Erscheinungsdatum :

    24.09.2024


    Format / Umfang :

    458166 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Environmental Monitoring via Vehicular Crowdsensing

    Morselli, Flavio / Zabini, Flavio / Conti, Andrea | IEEE | 2018


    Large Scale Active Vehicular Crowdsensing

    Zhu, Xiru / Samadh, Shabir Abdul / Yu, Tzu-Yang | IEEE | 2018


    Dynamic parking maps from vehicular crowdsensing

    Bock, Fabian / Gottfried Wilhelm Leibniz Universität Hannover | TIBKAT | 2018


    Dynamic parking maps from vehicular crowdsensing

    Bock, Fabian / Gottfried Wilhelm Leibniz Universität Hannover | GWLB - Gottfried Wilhelm Leibniz Bibliothek | 2018