RadioWeaves, in which distributed antennas with integrated radio and compute resources serve a large number of users, is envisioned to provide high data rates in next-generation wireless systems. In this paper, we develop a physical layer abstraction model to evaluate the performance of different RadioWeaves deployment scenarios. This model helps speed up system-level simulators of the RadioWeaves and is made up of two blocks. The first block generates a vector of signal-to-interference-plus-noise ratios (SINRs) corresponding to each coherence block, and the second block predicts the packet error rate corresponding to the SINRs generated. The vector of SINRs generated depends on different parameters such as the number of users, user locations, antenna configurations, and precoders. We have also considered different antenna gain patterns, such as omni-directional and directional microstrip patch antennas. Our model exploits the benefits of exponential effective SINR mapping (EESM). We study the robustness and accuracy of the EESM for RadioWeaves.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Physical Layer Abstraction Model for RadioWeaves




    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    1113443 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Physical-Layer Abstraction for Hybrid GNSS and 5G Positioning Evaluations

    del Peral-Rosado, Jose A. / Bartlett, David / Grec, Florin et al. | IEEE | 2019


    CCSDS Spacecraft Monitoring & Control: Message Abstraction Layer

    Thompson, Roger / Cooper, Sam | AIAA | 2008


    Service Abstraction Layer for UAV Flexible Application Development

    Royo, P. / Lopez, J. / Barrado, C. et al. | British Library Conference Proceedings | 2008


    Service Abstraction Layer for UAV Flexible Application Development

    Royo, Pablo / Lopez, Juan / Barrado, Cristina et al. | AIAA | 2008


    Generic Model Abstraction from Examples

    Keselman, Y. / Dickinson, S. / IEEE | British Library Conference Proceedings | 2001