Beam training is one of the kernel problems in Millimeter-Wave(mmWave) massive multiple-input multiple-output(MIMO) systems. The beam direction explicitly relies on user location and is implicitly related to channel state information(CSI). Based on this fact, we propose a deep neural network-based novel downlink beam prediction framework to reduce the beam training overhead while achieving higher reliability. Considering that the user location and CSI are two completely different types and dimensions of information, the proposed neural network adopts adjustable feature fusion learning(AFFL) to fuse the two kinds of information. To reduce the beam training overhead, only the user location and the CSI of a minimal number of antennas are taken as the network’s inputs. In addition, when fusing, the signal-to-noise ratio(SNR) is used to adaptively adjust the weights of the two inputs on beam prediction output. Finally, simulation results corroborate that the proposed AFFL-based framework can achieve superior performance and robustness than the strategy which solely uses CSI, especially under low SNR conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Beam Prediction for mmWave Massive MIMO using Adjustable Feature Fusion Learning


    Beteiligte:
    Yang, Sicheng (Autor:in) / Ma, Jianpeng (Autor:in) / Zhang, Shun (Autor:in) / Li, Hongyan (Autor:in)


    Erscheinungsdatum :

    2022-06-01


    Format / Umfang :

    1118517 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    mmWave massive MIMO vehicular communications

    Cheng, Xiang / Gao, Shijian / Yang, Liuqing | TIBKAT | 2023


    Beam Squint Effect in Multi-Beam mmWave Massive MIMO Systems

    Afeef, Liza / Arslan, Huseyin | IEEE | 2022


    MmWave Massive MIMO Hybrid Precoding Prediction in High Mobility Scenarios

    Yan, Yipai / Zhao, Honglin / Zhang, Jiayan et al. | IEEE | 2021