Gaze estimation can be used for assessing the attention level of drivers. Current works predominantly focus on enhancing model accuracy, often overlooking the influence of input sample and label uncertainty. In this paper, we propose a framework for uncertainty modeling in driver gaze estimation via feature disentanglement, referred to as UnMoDE. Our approach begins by extracting facial information into distinct feature spaces using an asymmetric dual-branch encoder to obtain gaze features. Subsequently, a multi-layer perceptron (MLP) is employed to project gaze features and labels into an embedding space, representing them as Gaussian distributions. The uncertainty is described using a covariance matrix. Random sampling is applied to derive samples from the gaze embedding distribution to estimate the most probable embedding representation. This estimated representation is then used to regress the gaze direction and is projected back into the gaze feature space, along with identity information, to facilitate facial reconstruction. Extensive experimental evaluations demonstrate that UnMoDE significantly outperforms baseline and state-of-the-art methods on the latest benchmark datasets collected for drivers, particularly in reducing the number of samples with significant errors.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    UnMoDE: Uncertainty Modeling for Driver Gaze Estimation via Feature Disentanglement


    Beteiligte:
    Hu, Daosong (Autor:in) / Cui, Mingyue (Autor:in) / Huang, Kai (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.07.2025


    Format / Umfang :

    1787239 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DRIVER DISTRACTION FROM UNCERTAIN GAZE ESTIMATION

    ALMÁSI PÉTER / OLLESSON NIKLAS / SANTIAGO ANJIN GABRIEL ALEXANDER et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Feature Disentanglement of Robot Trajectories

    Valdenegro-Toro, Matias / Harnack, Daniel / Wöhrle, Hendrik | ArXiv | 2021

    Freier Zugriff

    Young Driver Gaze (YDGaze): Dataset for driver gaze analysis

    Ceven, Suleyman / Albayrak, Ahmet / Bayir, Raif | IEEE | 2022


    GSA-Gaze: Generative Self-adversarial Learning for Domain Generalized Driver Gaze Estimation

    Han, Hongcheng / Tian, Zhiqiang / Liu, Yuying et al. | IEEE | 2023


    ESTIMATION OF DRIVER STATE BASED ON EYE GAZE

    HECHT RON M / ORON SHAUL / TSIMHONI OMER et al. | Europäisches Patentamt | 2024

    Freier Zugriff