Estimation of target trajectory from passive sonar bearings and frequency measurements in the presence of multivariate normally distributed noise, with unknown inhomogeneous general covariance, is modeled as a nonlinear multiresponse parameter estimation problem. It is shown that maximum likelihood estimation in this case is identical to optimizing a determinant criterion which has a concise form and contains no elements of unknown covariance matrix. A Gauss-Newton type algorithm using only the first-order derivatives of the model function and a new convergence criterion, is presented to implement such estimation. The simulation results demonstrate that performance of the maximum likelihood estimation method with the above noise model is superior to that with the traditional noise assumption.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Passive target tracking using maximum likelihood estimation


    Beteiligte:
    Xiao-Jiao Tao (Autor:in) / Cai-Rong Zou (Autor:in) / Zhen-Ya He (Autor:in)


    Erscheinungsdatum :

    01.10.1996


    Format / Umfang :

    840762 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch