The research community has shown significant improvements in both vision-based detection and tracking of vehicles, working towards a high level understanding of on-road maneuvers. Behaviors of surrounding vehicles in a highway environment is found as an interesting starting point, of why this dataset is introduced along with its challenges and evaluation metrics. A vision-based multi-perspective dataset is presented, containing a full panoramic view from a moving platform driving on U.S. highways capturing 2704×1440 resolution images at 12 frames per second. The dataset serves multiple purposes to be used as traditional detection and tracking, together with tracking of vehicles across perspectives. Each of the four perspectives have been annotated, resulting in more than 4000 bounding boxes in order to evaluate and compare novel methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-perspective vehicle detection and tracking: Challenges, dataset, and metrics


    Beteiligte:


    Erscheinungsdatum :

    01.11.2016


    Format / Umfang :

    1112523 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi-Perspective Tracking for Intelligent Vehicle

    Ji, Xiangyang / Zhang, Guanwen / Chen, Xiaogang et al. | IEEE | 2018


    CSVD: a cross-scenario vehicle dataset for multi-object tracking

    Li, Xiaolei / Zhou, Juefan / Xiao, Xingjie et al. | SPIE | 2024


    Dataset Evaluation for Multi Vehicle Detection using Vision Based Techniques

    Nine, Julkar / Kishor Anapunje, Aarti | DataCite | 2021

    Freier Zugriff

    LUMPI: The Leibniz University Multi-Perspective Intersection Dataset

    Busch, Steffen / Koetsier, Christian / Axmann, Jeldrik et al. | IEEE | 2022