This paper addresses the problem of designing an angular velocity observer and an output feedback attitude controller with finite-time convergence and disturbances for spacecraft. First, two new concepts of finite-time stability are proposed and defined as the local fast-finite-time stability and the fast-finite-time uniformly ultimately boundness, which can be seen as the extensions of the traditional fast-finite-time stability. Then, based on these two concepts of stability, a fast-finite-time observer is designed to estimate the unknown angular velocity. Next, based on the estimation of the angular velocity, a nonsingular and continuous attitude control algorithm is proposed to achieve the finite-time stability or finite-time boundness. With consideration of the observation errors and disturbances in the closed-loop system, a rigorous analysis of the proposed strategy is provided through Lyapunov approach. It shows that the observation errors and the spacecraft attitude will converge to a region of zero in finite time. Numerical simulation studies are presented to illustrate the effectiveness of the proposed observer-based attitude control scheme.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Continuous Finite-Time Attitude Control for Rigid Spacecraft Based on Angular Velocity Observer


    Beteiligte:
    Qinglei Hu, (Autor:in) / Boyan Jiang, (Autor:in)


    Erscheinungsdatum :

    2018-06-01


    Format / Umfang :

    617297 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch