This letter is a brief summary of a series of IEEE TIV's decentralized and hybrid workshops (DHWs) on Federated Intelligence for Intelligent Vehicles. The discussed results are: 1) Different scales of large models (LMs) can be federated and deployed on IVs, and three types of federated collaboration between large and small models can be adopted for IVs. 2) Federated fine-tuning of LMs is beneficial for IVs data security. 3) The sustainability of IVs can be improved through optimizing existing models and continuous learning using federated intelligence. 4) LM-enhanced knowledge can make IVs smarter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Federated Intelligence for Intelligent Vehicles


    Beteiligte:
    Zhang, Weishan (Autor:in) / Zhang, Baoyu (Autor:in) / Jia, Xiaofeng (Autor:in) / Qi, Hongwei (Autor:in) / Qin, Rui (Autor:in) / Li, Juanjuan (Autor:in) / Tian, Yonglin (Autor:in) / Liang, Xiaolong (Autor:in) / Wang, Fei-Yue (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.05.2024


    Format / Umfang :

    1337477 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A federated intelligent product environment

    Roehl, Peter / Kolonay, Raymond / Irani, Rohinton et al. | AIAA | 2000


    Testing Intelligence: Accelerating the Verification and Validation of Intelligent Vehicles

    Wang, Fei-Yue / Hu, Jia / Lai, Jintao | IEEE | 2023

    Freier Zugriff


    Federated Learning for Drowsiness Detection in Connected Vehicles

    Lindskog, William / Spannagl, Valentin / Prehofer, Christian | Springer Verlag | 2023