Estimation of airport capacity plays a fundamental role in planning air traffic flow around the airport. Due to the impact of various dynamic factors on practical airport operation, e.g., the varying meteorological condition and changing fleet mix, airport capacity is characterized by uncertainties. The robustness of the existing iconic estimation approaches is challenged. This paper proposes a scenario-based optimization approach to robust estimation of airport capacity in the presence of the operational uncertainties. The capacity envelope identified through empirical analysis is associated with some probabilistic level and the estimation problem is then formulated as a chance-constrained optimization program approximately solved via scenario approach. Case study using real data set collected from Beijing Capital International Airport shows that the capacity envelope obtained by the proposed approach is more robust than two iconic approaches, i.e., proportion-based filtration approach and the quantile regression approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Scenario-Based Optimization Approach to Robust Estimation of Airport Capacity


    Beteiligte:
    Ju, Fei (Autor:in) / Cai, Kaiquan (Autor:in) / Yang, Yang (Autor:in) / Gao, Yuan (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    228102 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Robust estimation of airport declared capacity

    Xu, Mengting / Wang, Mengyin / Wang, Yanjun et al. | IEEE | 2022


    Scenario Analysis for Probabilistic Airport Departure Capacity

    Zhang, Minghua / Yang, Yang / Fadil, Abdelghani et al. | IEEE | 2022


    Simulation-Based Airport Capacity Estimation

    Ramamoorthy, K. / Hunter, G. | British Library Conference Proceedings | 2013