Traffic flow prediction is one of the core technologies in Intelligent Transportation System (ITS) to improve traffic management. However, in metropolitan circumstances, the complex traffic road networks and numerous unpredictable traffic anomalies are still tough problems, which bring challenges of leveraging topological and anomalies information to accurate traffic flow prediction. In this paper, we propose a Dynamic Hidden Markov Model (DHMM) based on global PageRank algorithm to overcome these challenges. The global PageRank algorithm is more applicable than traditional algorithm for traffic scenarios, through which the PageRank metric is calculated to measure the accumulation of traffic anomalies at intersections. By incorporating the PageRank metric, DHMM leverages topological and anomalies information to dynamically model the traffic variations. Experiments on real-world dataset demonstrate that the PageRank metric can describe the degree of traffic anomalies intuitively, and the proposed model has superior traffic flow prediction performance both under normal and abnormal traffic conditions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Dynamic Hidden Markov Model for Metropolitan Traffic Flow Prediction


    Beteiligte:
    Li, Zihan (Autor:in) / Chen, Cailian (Autor:in) / Min, Yang (Autor:in) / He, Jianping (Autor:in) / Yang, Bo (Autor:in)


    Erscheinungsdatum :

    01.11.2020


    Format / Umfang :

    1825537 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Freeway traffic flow prediction based on hidden Markov model

    Jiang, Jiyang / Guo, Tangyi / Pan, Weipeng et al. | SPIE | 2022


    Freeway traffic flow prediction based on hidden Markov model

    Jiang, Jiyang / Guo, Tangyi / Pan, Weipeng et al. | British Library Conference Proceedings | 2022



    Traffic Speed Prediction Using Hidden Markov Models for Czech Republic Highways

    Rapant, Lukáš / Slaninová, Kateřina / Martinovič, Jan et al. | Springer Verlag | 2016


    Traffic Prediction in Metropolitan Freeways

    Liberto, Carlo / Ragona, Roberto / Valenti, Gaetano | ASCE | 2010