Modeling spatial dependency is crucial to solving traffic prediction tasks; thus, spatial-temporal graph-based models have been widely used in this area in recent years. Existing approaches either rely on a fixed pre-defined graph (e.g., a road network) or learn the correlations between locations. However, most methods suffer from spurious correlation and do not sufficiently consider the traffic's causal relationships. This study proposes a Spatiotemporal Causal Graph Inference (ST-CGI) framework for traffic prediction tasks that learn both the causal graph and autoregressive processes. We decouple the spatiotemporal traffic prediction process into two steps; the causal graph inference step and the autoregressive step, where the latter relies on the former. Optimizing the entire framework on the autoregressive task approximates the Granger causality test and thus enables excellent interpretability of the prediction. Extensive experimentation using two real-world datasets demonstrates the outstanding performance of the proposed models.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Granger Causal Inference for Interpretable Traffic Prediction


    Beteiligte:
    Zhang, Lei (Autor:in) / Fu, Kaiqun (Autor:in) / Ji, Taoran (Autor:in) / Lu, Chang-Tien (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    2418234 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Interpretable traffic flow prediction stacking method

    SUN FUCHUN / LIU ZHIYUAN / XUE ZHICHAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Interpretable space-time analysis method for traffic jam prediction

    GUAN HONG / KONG LINGBAI / YANG HANCHEN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Accurate and Interpretable Bayesian MARS for Traffic Flow Prediction

    Xu, Yanyan / Kong, Qing-Jie / Klette, Reinhard et al. | IEEE | 2014



    Traffic accident severity prediction based on interpretable deep learning model

    Pei, Yulong / Wen, Yuhang / Pan, Sheng | Taylor & Francis Verlag | 2025