In this paper, a new feature extraction technique for texture classification is proposed. Features are energy and standard deviation of spectral correlation function (SCF) of signals got from image at different regions of bifrequency plane. This scheme shows high performance in the classification of Brodatz texture images. Experimental results indicate that the proposed method improves correct classification rate in comparing with traditional discrete wavelet transform approaches.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Texture Classification Using Cyclic Spectral Function




    Erscheinungsdatum :

    01.05.2008


    Format / Umfang :

    949600 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Texture image classification using modular radial basis function neural networks

    Chang, C.-Y. / Wang, H.-J. / Fu, S.-Y. | British Library Online Contents | 2010


    Texture classification using a fuzzy texture spectrum and neural networks

    Taut, J. S. / Tao, C.-W. | British Library Online Contents | 1998


    Texture Classification Using Combined Feature Sets

    Ng, L. S. / Nixon, M. S. / Carter, J. et al. | British Library Conference Proceedings | 1998


    Rotation Invariant Texture Classification using Covariance

    Madiraju, S. V. R. / Liu, C.-C. / IEEE; Signal Processing Society | British Library Conference Proceedings | 1994


    Texture Classification using Statistical Geometrical Features

    Yan Qiu Chen / Nixon, M. S. / Thomas, D. W. et al. | British Library Conference Proceedings | 1994