Similarity searching is an important task when trying to find patterns in applications which involve mining different types of data such as images, video, time series, text documents, DNA sequences, etc. Similarity searching often reduces to finding the k nearest neighbors to a query object. A description is given of how to use an estimate of the maximum possible distance at which a nearest neighbor can be found to prune the search process in a depth-first branch-and-bound k-nearest neighbor finding algorithm. Using the MaxNearestDist estimator (Larsen, S. and Kanal, L.N., 1986) in the depth-first k-nearest neighbor algorithm provides a middle ground between a pure depth-first and a best-first k-nearest neighbor algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Depth-first k-nearest neighbor finding using the MaxNearestDist estimator


    Beteiligte:
    Samet, H. (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    308197 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Depth-First K-Nearest Neighbor Finding Using the MaxNearestDist Estimator

    Samet, H. / IEEE | British Library Conference Proceedings | 2003


    Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information

    Runge, Jakob | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2018

    Freier Zugriff

    3DNN: 3D Nearest Neighbor

    Satkin, S. / Rashid, M. / Lin, J. et al. | British Library Online Contents | 2015


    Nearest neighbor search for relevance feedback

    Tesic, J. / Manjunath, B.S. | IEEE | 2003


    LDA/SVM driven nearest neighbor classification

    Jing Peng, / Heisterkamp, D.R. / Dai, H.K. | IEEE | 2001