Region-based tracking in a temporal image sequence is described as a segmentation of current frame into a set of non-overlapping regions: the tracking regions and the non-tracking region. The segmentation is viewed to be a Markov labeling process. Based on the key idea of using a doubly stochastic prior model, the optimal estimation for the label field is found by the minimization of a differentiable function. We exploit the feature-spatial probabilistic representation of a region as the conditional distribution in the Bayesian framework, which makes our tracker robust to local deformation and partial occlusion. The continuity of the objective function leads to a much faster numerical implementation. Very promising experimental results on some real-world sequences are presented to illustrate the performance of the presented algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Region Tracking via HMMF in Joint Feature-Spatial Space


    Beteiligte:
    XiaoTong, Yuan (Autor:in) / ShuTang, Yang (Autor:in) / HongWen, Zhu (Autor:in)


    Erscheinungsdatum :

    01.01.2005


    Format / Umfang :

    283826 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Probabilistic tracking in joint feature-spatial spaces

    Elgammal, A. / Duraiswami, R. / Davis, L.S. | IEEE | 2003


    Probabilistic Tracking in Joint Feature-Spatial Spaces

    Elgammal, A. / Duraiswami, R. / Davis, L. et al. | British Library Conference Proceedings | 2003



    Joint Feature-Spatial-Measure Space: A New approach to Highly Efficient Probabilistic Object Tracking

    Chen, F. / Yuan, X. / Yang, S. | British Library Conference Proceedings | 2005


    Joint Region Tracking with Switching Hypothesized Measurements

    Wang, Y. / Tan, T. / Loe, K. et al. | British Library Conference Proceedings | 2003