Despite the enormous progress of the last years, urban environments still represent a challenge for robot autonomous navigation. This paper focuses on the problem of detecting street pole-like obstacles using a monocular camera. Such obstacles, due to their thin structure, may be difficult to be detected by common active sensors like lasers. This is even more critical for innovative solid state LiDARs like the one employed in this work because, at the actual state, they are characterized by very low angular resolutions. The approach described here is based on identifying poles as long vertical structures in the image and in locating them with respect to the robot using a Kalman filter based depth estimation. This information can then be fused with the information coming from LiDARs realizing a complete obstacle detection module.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-Based Pole-Like Obstacle Detection and Localization for Urban Mobile Robots


    Beteiligte:


    Erscheinungsdatum :

    01.06.2018


    Format / Umfang :

    2942835 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    VISION-BASED POLE-LIKE OBSTACLE DETECTION AND LOCALIZATION FOR URBAN MOBILE ROBOTS

    Sabatini, Stefano / Corno, Matteo / Fiorenti, Simone et al. | British Library Conference Proceedings | 2018


    Vision based obstacle avoidance and navigation system for mobile robots

    Srinivasa, Santhosh | BASE | 2020

    Freier Zugriff

    Map-based localization for urban service mobile robots

    Corominas Murtra, Andreu | BASE | 2011

    Freier Zugriff

    Mobile Robots with Dynamic Obstacle Avoidance

    Ali, Maram / Das, Saptarshi | IEEE | 2023


    Optimisation-based verification process of obstacle avoidance systems for unicycle-like mobile robots

    Srikanthakumar, S. / Chen, W. H. | British Library Online Contents | 2011