The recommendation algorithm based on deep learning solves many drawbacks of traditional recommendation algorithms by studying the application of deep learning in the recommendation field, improving the utilization of information and the accuracy of recommendations. However, existing recommendation algorithms often overlook the comprehensive consideration of users' long-term and short-term interests, and only consider interests from a single perspective, whether long-term or short-term. This leads to the problem of low recommendation efficiency and affects algorithm efficiency. This article proposes two improved algorithm models that integrate users' long-term and short-term interest preferences and complete new project recommendations for users.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on Hybrid Recommendation Algorithm Based on Deep Learning


    Beteiligte:


    Erscheinungsdatum :

    11.10.2023


    Format / Umfang :

    2650116 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Employment Recommendation Algorithm Based on Ensemble Learning

    Lin, Yubei / Huang, Yinhua / Chen, Pingping | IEEE | 2019




    Research on path planning algorithm based on deep reinforcement learning

    Wang, Zhihao / Yan, Weiqiang / Yang, Mingjun | IEEE | 2024


    Research on Traffic Target Recognition Algorithm Based on Deep Learning

    Li, Dan / Dang, Xiangying / Shi, Hanqin et al. | IEEE | 2023