LiDAR sensors used in autonomous driving applications are negatively affected by adverse weather conditions. One common, but understudied effect, is the condensation of vehicle gas exhaust in cold weather. This everyday phenomenon can severely impact the quality of LiDAR measurements, resulting in a less accurate environment perception by creating artifacts like ghost object detections. In the literature, the semantic segmentation of adverse weather effects like rain and fog is achieved using learning-based approaches. However, such methods require large sets of labeled data, which can be extremely expensive and laborious to get. We address this problem by presenting a two-step approach for the detection of condensed vehicle gas exhaust. First, we identify for each vehicle in a scene its emission area and detect gas exhaust if present. Then, isolated clouds are detected by modeling through time the regions of space where gas exhaust is likely to be present. We test our method on real urban data, showing that our approach can reliably detect gas exhaust in different scenarios, making it appealing for offline pre-labeling and online applications such as ghost object detection.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Detection of Condensed Vehicle Gas Exhaust in LiDAR Point Clouds


    Beteiligte:
    Piroli, Aldi (Autor:in) / Dallabetta, Vinzenz (Autor:in) / Walessa, Marc (Autor:in) / Meissner, Daniel (Autor:in) / Kopp, Johannes (Autor:in) / Dietmayer, Klaus (Autor:in)


    Erscheinungsdatum :

    08.10.2022


    Format / Umfang :

    2839634 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    3D vehicle detection on an FPGA from LiDAR point clouds

    García López, Javier / Moreno-Noguer, Francesc / Agudo, Antonio | BASE | 2019

    Freier Zugriff

    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Top-down object detection from LiDAR point clouds

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    TOP-DOWN OBJECT DETECTION FROM LIDAR POINT CLOUDS

    SMOLYANSKIY NIKOLAI / OLDJA RYAN / CHEN KE et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Detection of Cars in Mobile Lidar Point Clouds

    Li, Guorui / Fang, Xinwei / Khoshelham, Kourosh et al. | IEEE | 2018