In this study, we propose a multiple vehicle tracking method using multiple hypotheses and the appearance model. The multiple hypotheses are associated with multiple tracks using track-to-multiple hypotheses association method. A target state is estimated using the maximum a posteriori probability estimation method. The posterior probability is proportional to the product of a priori probability and the likelihood that is calculated using similarities of multiple hypotheses and the appearance model. The posterior probability density function is estimated using the Markov chain Monte Carlo particle filter. An optimal posterior target state is determined using a sample with the maximum a posteriori probability. Our experimental results show that the proposed method can improve multiple objects tracking precision as well as multiple object tracking accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    MCMC particle filter-based vehicle tracking method using multiple hypotheses and appearance model


    Beteiligte:
    Lim, Young-Chul (Autor:in) / Kim, Dongyoung (Autor:in) / Lee, Chung-Hee (Autor:in)


    Erscheinungsdatum :

    01.06.2013


    Format / Umfang :

    573860 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    MCMC PARTICLE FILTER-BASED VEHICLE TRACKING METHOD USING MULTIPLE HYPOTHESES AND APPEARANCE MODEL

    Lim, Y. / Kim, D. / Lee, C. et al. | British Library Conference Proceedings | 2013


    MCMC Particle Filter for Real-Time Visual Tracking of Vehicles

    Bardet, Francois / Chateau, Thierry | IEEE | 2008


    Tracking of coordinated groups using marginalised MCMC-based Particle algorithm

    Septier, Francois / Pang, Sze Kim / Godsill, Simon et al. | IEEE | 2009



    LMB Filter Based Tracking Allowing for Multiple Hypotheses in Object Reference Point Association

    Martin Herrmann / Aldi Piroli / Jan Strohbeck et al. | BASE | 2020

    Freier Zugriff