Insufficient localization accuracy of global navigation satellite system (GNSS) receivers is one of the challenges to implement advanced intelligent transportation system in highly urbanized areas. Multipath and non-line-of-sight (NLOS) effects strongly deteriorate GNSS positioning performance. This paper aims to train a classifier by supervised machine learning to separate the type of GNSS pseudorange measurement into three categories, clean, multipath and NLOS. Several features obtained or calculated from the GNSS raw data are evaluated. This paper also proposes a new feature to indicate the consistency between measurements of pseudorange and Doppler shift. According to the experiment result, about 75% of classification accuracy can be achieved using a support vector machine (SVM) classifier trained by the proposed feature and received signal strength.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    GNSS multipath detection using a machine learning approach


    Beteiligte:
    Hsu, Li-Ta (Autor:in)


    Erscheinungsdatum :

    01.10.2017


    Format / Umfang :

    858797 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Machine Learning in GNSS Multipath/NLOS Mitigation: Review and Benchmark

    Xu, Penghui / Zhang, Guohao / Yang, Bo et al. | IEEE | 2024


    Multipath Detection from GNSS Observables Using Gated Recurrent Unit

    Geragersian, Patrick / Petrunin, Ivan / Guo, Weisi et al. | IEEE | 2022


    GNSS Multipath Mitigation using Antenna Motion

    Psiaki, Mark L | Online Contents | 2015


    MPCNet: GNSS Multipath Error Compensation Network via Multi-task learning

    Cho, Sangjae / Seok, Hong-Woo / Kong, Seung-Hyun | IEEE | 2023


    GNSS multipath signal model and altimetry method

    Li, Wei / Zhu, Yunlong / Wang, Feng et al. | British Library Online Contents | 2018