Presently, most autonomous aerial vehicles rely on satellite navigation such as GPS to sense their position in the earth reference frame. However, reliance on GPS restricts the vehicle to missions where GPS signals are readily received. Motion capture systems are capable of indoor localization but require large infrastructure and are prone to occlusion. To overcome these restrictions, a self-contained high-speed vision system was developed at the University of Tokyo in collaboration with Boeing Research & Technology. The system has been flight tested and shown to be capable of drift-free position and attitude estimates without any reliance on GPS signals. Furthermore, the positional accuracy and update rate is at least one order of magnitude superior to that of uncorrected GPS.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Aggressive navigation using high-speed natural feature point tracking


    Beteiligte:
    Raabe, Chris (Autor:in) / Henell, Daniel (Autor:in) / Saad, Emad (Autor:in) / Vian, John (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.03.2014


    Format / Umfang :

    2196243 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Natural feature tracking for autonomous navigation

    Paar,G. / Sidla,O. / Poelzleitner,W. et al. | Kraftfahrwesen | 1995


    Natural Feature Tracking for Autonomous Navigation

    Paar, G. / Sidla, O. / Poelzleitner, W. | British Library Conference Proceedings | 1995


    Lessons learned from OSIRIS-REx autonomous navigation using natural feature tracking

    Lorenz, David A. / Olds, Ryan / May, Alexander et al. | IEEE | 2017


    Extent-Informed Tracking for Feature-Based Navigation

    Brouk, James D. / DeMars, Kyle J. | AIAA | 2024


    Aggressive Longitudinal Aircraft Trajectory Tracking Using Nonlinear Control

    Saif A. Al-Hiddabi / N. Harris McClamroch | AIAA | 2002