This article concerns the direction-of-arrival (DOA) estimation problem in the Bayesian framework by using the sparse methods that incorporate the prior knowledge within the array observation data. The obtained prior knowledge of DOAs is assumed to follow a prior distribution. Considering the unknown DOAs are random variables, we propose two sparse methods by effectively and efficiently exploiting the information from the observation data and prior knowledge. One is a grid-based sparse method using the second-order cone programming by discretizing the grids in the prescribed prior region where the targets occur with high probability. The other is a gridless sparse method using the atomic norm minimization by transforming the prior knowledge into a semidefinite constraint. The first is computationally efficient, but it suffers from grid mismatch problems in high SNR. The second further improves the estimation performance with high computational complexity. Simulation results demonstrate the superiority of the proposed methods when compared with the traditional DOA estimation methods together with the maximum a posteriori estimator and the Bayesian Cramér–Rao lower bounds.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Bayesian Direction-of-Arrival Estimation Using Atomic Norm Minimization With Prior Knowledge


    Beteiligte:
    Jia, Tianyi (Autor:in) / Liu, Hongwei (Autor:in) / Gao, Chang (Autor:in) / Yan, Junkun (Autor:in)


    Erscheinungsdatum :

    01.10.2024


    Format / Umfang :

    1771726 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Direction of arrival estimation

    CHEBIYYAM VENKATA SUBRAHMANYAM CHANDRA SEKHAR / CHO NAM GOOK / DUARTE NATHAN et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    MUSIC With Capped Frobenius Norm: Efficient Robust Direction-of-Arrival Estimator

    Li, Xiao Peng / Liu, Zhaofeng / Shi, Zhang-Lei et al. | IEEE | 2023


    Direction of Arrival (DOA) Estimation

    Gamba, Jonah | Springer Verlag | 2019