This paper presents a new method for representing the spatial information present in digital grey-tone images. The method is based on using multi-resolution decompositions (MRDs) and Markov random fields (MRFs) concurrently. A given image is represented by a MRD of it, along with an optimally estimated set of Gaussian MRF (GMRF) parameters. Since the GMRF parameters are very small in number, this addition to the usual MRD results in only a small increase in the number of bits in the representation. It is shown, however, that such a minor addition helps when reconstructing the (given) original image from its MRD. Experimental results are presented to illustrate the usefulness of this new method.<>


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-resolution image representation using Markov random fields


    Beteiligte:
    Lakshmanan, S. (Autor:in) / Jain, A.K. (Autor:in) / Yu Zhong (Autor:in)


    Erscheinungsdatum :

    01.01.1994


    Format / Umfang :

    440955 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-resolution Image Representation using Markov Random Fields

    Lakshmanan, S. / Jain, A. K. / Yu, Z. et al. | British Library Conference Proceedings | 1994



    Bayesian image classification using Markov random fields

    Berthod, M. / Kato, Z. / Yu, S. et al. | British Library Online Contents | 1996


    Markov random fields for vision and image processing

    Blake, Andrew ;Kohli, Pushmeet ;Rother, Carsten | TIBKAT | 2011

    Freier Zugriff