Korean grammar error recognition algorithm based on big data corpus and semantic analysis is studied in this paper. Data mining directly faces massive data, and there are also some various complex relationships between these data, which leads to the surge of search space and search dimension in the mining process. Based on the traditional methods, the semantic analysis and the big data framework are combined to construct framework for the recognition algorithm. The component analysis method is mainly used in the field of word meaning research, and its use premise is to divide the word meaning into different semantic components, this model is applied into the grammar error recognition. The performance of the model is efficient, and the application scenarios are discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Korean Grammar Error Recognition Algorithm Based on Big Data Corpus and Semantic Analysis


    Beteiligte:
    Qin, Guanglan (Autor:in)


    Erscheinungsdatum :

    02.12.2021


    Format / Umfang :

    847638 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Grammar-Constrained Neural Semantic Parsing with LR Parsers

    Baranowski, Artur / Hochgeschwender, Nico | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2021

    Freier Zugriff

    Mining Layered Grammar Rules for Action Recognition

    Wang, L. / Wang, Y. / Gao, W. | British Library Online Contents | 2011


    Vehicular speech recognition grammar selection based upon captured or proximity information

    GRAUMANN DAVID L / ROSARIO BARBARA | Europäisches Patentamt | 2016

    Freier Zugriff