3D map exploration is one of key technologies in robotics. However, finding an optimal exploration path is a challenge since the environment is unknown. This research proposed the submodular exploration (SE) algorithm to enable an unmanned aerial vehicle (UAV) to explore 3D environments. The algorithm learns the submodular function in the Fourier domain and reconstructs the submodular function in the spatial domain via the compressed sensing techniques. Since the objective function of spatial exploration is reformulated as a maximizing submodular function with path constraints, greedy algorithms can achieve $\frac{1}{2}$ (1−e−1) of the optimum. Experiments conducted with this algorithm demonstrate that the UAV can explore more voxels in the environments than the benchmark approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    3D Map Exploration via Learning Submodular Functions in the Fourier Domain


    Beteiligte:
    Lu, Bing-Xian (Autor:in) / Tseng, Kuo-Shih (Autor:in)


    Erscheinungsdatum :

    01.09.2020


    Format / Umfang :

    1115280 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Exploiting submodular value functions for scaling up active perception

    Satsangi, Y. | British Library Online Contents | 2018


    Submodular Optimization via Reinforcement Learning for Active Control of Sensor Networks

    Garagic, Denis / Ravier, Robert / Peskoe, Jacob et al. | IEEE | 2022


    Crowd Counting With Limited Labeling Through Submodular Frame Selection

    Zhou, Qi / Zhang, Junping / Che, Lingfu et al. | IEEE | 2019


    Monolithic integrated power electronics for submodular photovoltaic energy harvesting

    Strache, Sebastian / Verlag Dr. Hut, München / Rheinisch-Westfälische Technische Hochschule Aachen | TIBKAT | 2016


    Heterogeneous Measurement Selection for Vehicle Tracking using Submodular Optimization

    Kirchner, Matthew R. / Hespanha, Joao P. / Garagic, Denis | IEEE | 2020