Self-positioning of smartphones in indoor environments offers a wide variety of applications. Anyway, in harsh environments, the achievable accuracies using received signal strength indicator measurement data are comparably low. However, restrictions due to geometry allow more accurate estimates of smartphone positions and trajectories. Based on received signal strength data from Bluetooth low energy beacons and Gaussian assumptions, an application of a discrete-state hidden Markov model – taking the geometry into account – in combination with dynamic model parameter estimation, leads to a significant improvement of error statistics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Geometry-Aided BLE-Based Smartphone Positioning for Indoor Location-Based Services




    Erscheinungsdatum :

    23.11.2020


    Format / Umfang :

    3169196 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch