This paper deals with the simulation results of an autonomous car learning to drive in a simplified environment containing only lane markings and static obstacles. Learning is performed using the Deep Q Network. For a given input image of the street captured by the car front camera, the Deep Q Network computes the Q values (rewards) corresponding to the actions available to the autonomous driving car. These actions are discrete angles through which the car can steer for a fixed speed. The autonomous driving system in the car enforces the action that has the highest reward. Our simulation results show high accuracy in learning to drive by observing the lanes and bypassing obstacles.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Driving System based on Deep Q Learnig


    Beteiligte:


    Erscheinungsdatum :

    01.03.2018


    Format / Umfang :

    736170 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Machine Learnig for Robotic Manipulation in cluttered environments

    Alet Puig, Ferran | BASE | 2016

    Freier Zugriff

    Online Learnig of Fuzzy Controller in Synchronism Pushing System

    Shiming, W. / Sun an, W. / Tianshi, L. | British Library Online Contents | 2001


    AUTONOMOUS DRIVING SYSTEM, AUTONOMOUS DRIVING METHOD, AND AUTONOMOUS DRIVING PROGRAM

    MISAWA HIDEAKI | Europäisches Patentamt | 2023

    Freier Zugriff