In recent years, with the rapid development of deep learning theory, real-valued convolutional neural networks (CNNs) have achieved significant success in the field of synthetic aperture radar (SAR) target recognition. However, different from natural images, the SAR images have complex information due to their special imaging mechanism. Traditional deep learning methods for SAR target recognition only employ the amplitude information and ignore the phase portion, which may sacrifice some useful information in the original complex SAR data. Moreover, the number of samples of SAR images is very limited. This is undoubtedly a huge challenge for the traditional real-valued CNNs which require numerous labeled data for training. Especially, since the single-channel SAR image contains only one channel, it has less available information than the multiple-channel SAR image. To deal with the above problems, a complex-valued CNN, for target recognition in single-channel SAR images is proposed in this article. The amplitude and phase information in the complex SAR data are fully utilized for target recognition. In addition, to alleviate the problem of small samples, this article also proposed a data augmentation method based on the complex SAR images. The experimental results based on the measured SAR data demonstrate that the proposed algorithm has better performance than the traditional real-valued CNNs.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Target Recognition in Single-Channel SAR Images Based on the Complex-Valued Convolutional Neural Network With Data Augmentation


    Beteiligte:
    Wang, Ruonan (Autor:in) / Wang, Zhaocheng (Autor:in) / Xia, Kewen (Autor:in) / Zou, Huanxin (Autor:in) / Li, Jun (Autor:in)


    Erscheinungsdatum :

    01.04.2023


    Format / Umfang :

    1334864 byte




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Deep Complex-Valued Convolutional Neural Network for Drone Recognition Based on RF Fingerprinting

    Jie Yang / Hao Gu / Chenhan Hu et al. | DOAJ | 2022

    Freier Zugriff

    DRIVER IDENTIFICATION SYSTEM USING CONVOLUTIONAL NEURAL NETWORK WITH BACKGROUND REMOVAL-BASED INFRARED DATA AUGMENTATION

    Kim, Sanghyuk / Lee, Yunsoo / Ahn, Namhyun et al. | British Library Conference Proceedings | 2018



    CV-SAR-Det: Target Detection for SAR Images via Deep Complex-Valued Network

    Wang, Zhaocheng / Wang, Ruonan / Kang, Hailong et al. | IEEE | 2024