This paper proposes a new framework for image segmentation based on the integration of MRFs and deformable models using graphical models. We first construct a graphical model to represent the relationship of the observed image pixels, the true region labels and the underlying object contour. We then formulate the problem of image segmentation as the one of joint regioncontour inference and learning in the graphical model. The graphical model representation allows us to use an approximate structured variational inference technique to solve this otherwise intractable joint inference problem. Using this technique, the MAP solution to the original model is obtained by finding the MAP solutions of two simpler models, an extended MRF model and a probabilistic deformable model, iteratively and incrementally. In the extended MRF model, the true region labels are estimated using the BP algorithm in a band area around the estimated contour from the probabilistic deformable model, and the result in turn guides the probabilistic deformable model to an improved estimation of the contour. Experimental results show that our new hybrid method outperforms both the MRF-based and the deformable model-based methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A graphical model framework for coupling MRFs and deformable models


    Beteiligte:
    Rui Huang, (Autor:in) / Pavlovic, V. (Autor:in) / Metaxas, D.N. (Autor:in)


    Erscheinungsdatum :

    01.01.2004


    Format / Umfang :

    761208 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Graphical Model Framework for Coupling MRFs and Deformable Models

    Huang, R. / Pavlovic, V. / Metaxas, D. et al. | British Library Conference Proceedings | 2004



    Multi-label Moves for MRFs with Truncated Convex Priors

    Veksler, O. | British Library Online Contents | 2012


    GRMA: Generalized Range Move Algorithms for the Efficient Optimization of MRFs

    Liu, K. / Zhang, J. / Yang, P. et al. | British Library Online Contents | 2017