Mathematical morphology coupled with creation of a time stack image and principal oscillation pattern analysis are used to determine the water depths over a known sloping bottom from synthetic remotely sensed images. The data, produced by a simulator, consisted of 60 images, each 256/spl times/256 pixels, separated by 1 second in time. The mathematical depth results are compared with those derived using principal oscillation pattern analysis by which three significant complex pairs of patterns are found with their corresponding characteristic times: e-folding times and periods. From these results and by using the classical hydrodynamic theory of gravity waves, water depths are determined. Both analyses yield small errors for the simulated data, indicating both methods should perform reliably for real data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Finding water depths from synthetic remotely sensed images


    Beteiligte:
    Martin, M.L. (Autor:in) / Luna, M.Y. (Autor:in) / Valero, F. (Autor:in) / Lea, S.M. (Autor:in) / Lybanon, M. (Autor:in)


    Erscheinungsdatum :

    01.01.1999


    Format / Umfang :

    209251 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Finding Water Depths from Synthetic Remotely Sensed Images

    Martin, M. / Luna, M. / Valero, F. et al. | British Library Conference Proceedings | 1999


    Digital processing of remotely sensed images

    Moik, Johannes G. | TIBKAT | 1980


    Multispectral Data Compression of Remotely-Sensed Images

    Jaggi, S. / AIAA | British Library Conference Proceedings | 1993


    Shape Recognition Schemes In Remotely Sensed Images

    Yamamoto, H. / Kohzo, K. | British Library Conference Proceedings | 1996