The aim of that paper is to improve theoretic train driving time between stations with use of machine learning and framework TensorFlow. For fluent train traffic management, it is very important to know accurate train arriving time. Then operation can be adapt depending on train delay. We can already calculate theoretic driving time, it includes multiple parameters as distance, angel of curves, angel of ascent and descent, maximal speed limit, engine parameters and driving parameters to save electricity with slowly decelerating before station. But it doesn't include state of railway, train set, weather conditions, weight of passengers,... So, we will use historic data and artificial intelligence to improve prediction to make railway management simpler.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improving teoretic train driving time with AI and TensorFlow


    Beteiligte:
    Krsak, Emil (Autor:in) / Kello, Tomas (Autor:in)


    Erscheinungsdatum :

    15.12.2020


    Format / Umfang :

    805903 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    DEPLOYING DEEP LEARNING IN OPENFOAM WITH TENSORFLOW

    Maulik, Romit / Sharma, Himanshu / Patel, Saumil et al. | TIBKAT | 2021


    Deploying deep learning in OpenFOAM with TensorFlow

    Maulik, Romit / Sharma, Himanshu / Patel, Saumil et al. | AIAA | 2021


    Object detection in rural roads using Tensorflow API

    Barba-Guaman, Luis / Naranjo, Jose Eugenio / Ortiz, Anthony | IEEE | 2020


    TRAIN DRIVING SUPPORT DEVICE, AND TRAIN DRIVING SUPPORT METHOD

    MIYAKI MARIKO / OWAKI TSUGUMICHI / YAMAGATA SHOHEI et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    TRAIN DRIVING ASSISTANCE APPARATUS AND TRAIN DRIVING ASSISTANCE METHOD

    GOTO RYOSUKE / NAKAGAWA MASAYO | Europäisches Patentamt | 2024

    Freier Zugriff