Accurate and reliable vehicle localization is an important requirement for many vehicular applications. In challenging environments like urban areas, the GNSS accuracy often degrades due to blocked or reflected satellite signals. To improve the standalone positioning accuracy, we propose a landmark based localization method using traffic signs. The traffic sign detections from a camera are associated with the landmarks in a pre-generated traffic sign database and correct the GNSS position of the vehicle within a Bayes Filter. This approach was evaluated with real-world data collected during a test drive in difficult urban scenarios and the results were compared with low-cost GNSS positioning.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improving Urban Vehicle Localization with Traffic Sign Recognition


    Beteiligte:
    Welzel, Andre (Autor:in) / Reisdorf, Pierre (Autor:in) / Wanielik, Gerd (Autor:in)


    Erscheinungsdatum :

    01.09.2015


    Format / Umfang :

    1143001 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Vehicle Localization Using a Traffic Sign Map

    Elfring, Jos / Dani, Subodh / Shakeri, Siavash et al. | IEEE | 2020


    Improving Traffic Sign Recognition with the YOLOv9 Algorithm

    Anand, Ketan / Dwivedi, Shyam Shankar | IEEE | 2025


    VEHICLE VISION SYSTEM WITH ENHANCED TRAFFIC SIGN RECOGNITION

    BIEMER MICHAEL / BOEGEL RUEDIGER | Europäisches Patentamt | 2018

    Freier Zugriff

    TRAFFIC SIGN RECOGNITION DEVICE AND TRAFFIC SIGN RECOGNITION METHOD

    MIYASATO KAZUHIRO / KOYASU TOSHIYA | Europäisches Patentamt | 2023

    Freier Zugriff

    Vehicle vision system with enhanced traffic sign recognition

    BIEMER MICHAEL / BOEGEL RUEDIGER | Europäisches Patentamt | 2019

    Freier Zugriff