The National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) has developed a tool for generating representative schedules of satellite communication sessions to aid in architecture assessments and data throughput analyses. Essentially, the tool provides an efficient method to address the Multi-Satellite Scheduling Problem (MSSP), an example competitive resource allocation problem. The tool interacts with a commercially available simulation environment, Satellite Tool Kit (STK), using a custom developed MATLAB interface. This paper details the reasoning behind the development of the tool, provides a description of the genetic algorithms used in the tool, and discusses example applications of the tool in supporting the future development of space missions and NASA's space communications infrastructure.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A multiple asset scheduler for satellite data throughput and variable rate analysis


    Beteiligte:


    Erscheinungsdatum :

    01.03.2012


    Format / Umfang :

    1222042 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    ACCELERATION OF S-POLAR ECC THROUGHPUT BY SCHEDULER

    BERMAN AMIT / BUZAGLO SARIT / DOUBCHAK ARIEL | Europäisches Patentamt | 2024

    Freier Zugriff

    Acceleration of S-polar ECC throughput by scheduler

    BERMAN AMIT / BUZAGLO SARIT / DOUBCHAK ARIEL | Europäisches Patentamt | 2025

    Freier Zugriff

    STADAN and data relay satellite simulation (emphasis on the scheduler)

    Kerne, B. / Shustermann, N. / Pease, P. | NTRS | 1972


    Inter-Satellite Link Network Scheduler for GNSS Constellation

    Barnwal, Pawan / Singh Bhadouria, Vijay / Upadhyay, Dhaval et al. | IEEE | 2024


    A Data-Driven Analysis of a Tactical Surface Scheduler

    Coupe, William J. / Bagasol, Leonard N. / Chen, Xiaoliang et al. | NTRS | 2018