A multi-modal genetic algorithm using a dynamic population concept is introduced. Each image point is assigned a label and for a chromosome to survive, it must have at least one image point with its label. In this way, the genetic algorithm dynamically segments the scene into one or more objects and the background noise. A repeated least square technique is applied to enhance the convergence performance. The integrated algorithm is tested using a 6 degrees-of-freedom template matching problem, and it is applied to a challenging image that contains multiple target objects as well as scene clutter due to unrelated objects.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Genetic algorithm with competitive image labelling and least square


    Beteiligte:
    Shiu Yin Yuen (Autor:in) / Chi Ho Ma (Autor:in)


    Erscheinungsdatum :

    01.01.1999


    Format / Umfang :

    67189 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Genetic Algorithm with Competitive Image Labelling and Least Square

    Yuen, S. / Ma, C. / IEEE | British Library Conference Proceedings | 1999



    Use of Residual DOP and Genetic Algorithm in Weighted-Least-Square GPS Positioning

    Lin, C.-C. / Wang, L.-S. / Chang, F.-R. et al. | British Library Conference Proceedings | 2006


    Stable Total Least Mean Square Adaptive Filter Algorithm

    Xiangyu, K. / Ruixuan, W. / Chongzhao, H. | British Library Online Contents | 2004


    Least Square Sparse Mapping and Octree-based A* Algorithm

    Watanabe, Toshinobu / Balci, Emre / Johnson, Eric N. | AIAA | 2018