A pixel in a hyperspectral image can be considered as a mixture of the reflectance spectra of several substances. The mixture coefficients correspond to the (relative) amounts of these substances. The benefit of hyperspectral imagery is that many different substances can be characterised and recognised by their spectral signatures. Independent component analysis (ICA) can be used for the blind separation of mixed statistically independent signals. Principal component analysis (PCA) also gives interesting results. The next step is to interpret and use the ICA or PCA results efficiently. This can be achieved by using a new technique called feature-vector based analysis (FVBA), which produces a number of component-feature vector pairs. The obtained feature vectors and the corresponding components represent, in this case, the spectral signatures and the corresponding image weight coefficients (the relative concentration maps) of the different constituting substances.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Using feature-vector based analysis, based on principal component analysis and independent component analysis, for analysing hyperspectral images


    Beteiligte:
    Muhammed, H.H. (Autor:in) / Ammenberg, P. (Autor:in) / Bengtsson, E. (Autor:in)


    Erscheinungsdatum :

    01.01.2001


    Format / Umfang :

    870667 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Using Feature-Vector Based Analysis, Based on Principal Component Analysis and Independent Component Analysis, for Analyzing Hyperspectral Images

    Muhammed, H. / Ammenberg, P. / Bengtsson, E. et al. | British Library Conference Proceedings | 2001


    Hyperspectral image fusion using 2-D principal component analysis

    Theoharatos, C. / Tsagaris, V. / Fragoulis, N. et al. | IEEE | 2011


    Band Selection Using Independent Component Analysis for Hyperspectral Image Processing

    Du, H. / Qi, H. / Wang, X. et al. | British Library Conference Proceedings | 2004


    Band selection using independent component analysis for hyperspectral image processing

    Hongtao Du, / Hairong Qi, / Xiaoling Wang, et al. | IEEE | 2003


    Improved independent component analysis applied to classification hyperspectral imagery

    Huijie, Z. / Na, L. / Guorui, J. et al. | British Library Online Contents | 2006