Tracking performance is a function of data quality, tracker type, and target maneuverability. Many contemporary tracking methods are useful for various operating conditions. To determine nonlinear tracking performance independent of the scenario, we wish to explore metrics that highlight the tracker capability. With the emerging relative track metrics, as opposed to root-mean-square error (RMS) calculations, we explore the Averaged Normalized Estimation Error Squared (ANESS) and Non Credibility Index (NCI) to determine tracker quality independent of the data. This paper demonstrates the usefulness of relative metrics to determine a model mismatch, or more specifically a bias in the model, using the probabilistic data association filter, the unscented Kalman filter, and the particle filter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Relative Track Metrics to Determine Model Mismatch


    Beteiligte:
    Blasch, Erik (Autor:in) / Rice, Andrew (Autor:in) / Yang, Chun (Autor:in) / Kadar, Ivan (Autor:in)


    Erscheinungsdatum :

    01.07.2008


    Format / Umfang :

    480104 byte





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Metrics, Schmetrics! How Do You Track a UAV's Autonomy?

    Clough, B. / American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2002


    Metrics on the Relative Spacecraft Motion Invariant Manifold

    Gurfil, P. / Kholshevnikov, K. V. | British Library Conference Proceedings | 2005


    Yardsticks to determine relative values of toll projects

    McKelvey, Jr., G.I. | Engineering Index Backfile | 1965