Due to recent advances in hyperspectral imaging sensors many subtle unknown signal sources that cannot be resolved by multispectral sensors can be now uncovered for target detection, discrimination, and identification. Because the information about such sources is generally not available, automatic target recognition (ATR) presents a great challenge to hyperspectral image analysts. Many approaches developed for ATR are based on second-order statistics in the past years. This paper investigates ATR techniques using high order statistics. For ATR in hyperspectral imagery, most interesting targets usually occur with low probabilities and small population and they generally cannot be described by second-order statistics. Under such circumstances, using high-order statistics to perform target detection have been shown by experiments in this paper to be more effective than using second order statistics. In order to further address a challenging issue in determining the number of signal sources needed to be detected, a recently developed concept of virtual dimensionality (VD) is used to estimate this number. The experiments demonstrate that using high-order statistics-based techniques in conjunction with the VD to perform ATR are indeed very effective
Automatic target recognition for hyperspectral imagery using high-order statistics
IEEE Transactions on Aerospace and Electronic Systems ; 42 , 4 ; 1372-1385
01.10.2006
3014328 byte
Aufsatz (Zeitschrift)
Elektronische Ressource
Englisch
Automatic Target Recognition for Hyperspectral Imagery using High-Order Statistics
Online Contents | 2006
|Automatic Spectral Target Recognition in Hyperspectral Imagery
Online Contents | 2003
|Dynamics of Target Detection Using Drone Based Hyperspectral Imagery
Springer Verlag | 2020
|