In this paper, a new method for mobile robot positioning is proposed. The method is a combination of particle filter (PF) and extended Kalman filter (EKF). Under normal driving situation, EKF is sufficient to estimate the vehicle's pose and location. Subject to external disturbances, EKF does not converge from time to time. PF is then introduced and the switching criteria are governed by the estimation confidence. We cluster the particles of PF into groups at the end of each iteration. The number of clusters is used as one of the parameters to determine whether the PF has converged. In the paper, the formulations and algorithms are illuminated and experimental results are also given and analyzed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Adaptive pose and location estimation for indoor mobile robot


    Beteiligte:
    Cheng Chen, (Autor:in) / Han Wang, (Autor:in)


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    417769 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Pose and Location Estimation for Indoor Mobile Robot

    Chen, C. / Wang, H. / IEEE | British Library Conference Proceedings | 2003


    A Fast Pose Estimation Method Based on New QR Code for Location of Indoor Mobile Robot

    Cao, Xuewei / Yang, Yiping / Lu, Tao et al. | British Library Conference Proceedings | 2019


    ROBOT POSE ESTIMATION

    RAMANATHAN NARAYANAN / MEYER TIMON / RASAM ADITYA SHIWAJI et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Performance Evaluation of Mobile Robot Pose Estimation in MARG-Driven EKF

    Odry, Akos / Kecskes, Istvan / Csik, Dominik et al. | TIBKAT | 2022


    Indoor autonomous mobile robot

    ZHU JIANYANG / ZHANG XUYANG / JIANG LIN et al. | Europäisches Patentamt | 2021

    Freier Zugriff