A reconfigurable spiking neural network is implemented in a 0.5µm CMOS digital tiny-chip. The connection weights are uploaded to registers on the ASIC. These weights are learned off-line, using combined simulated annealing and genetic algorithm. Large computational power and many simulations create small powerful networks that are adapted to interact with the environment. These configurations are swapped in and out of the ASIC to cope with varying situations and increase robustness. The network has been successfully tested with a simulated robot in a maze and can be extended for target recognition.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A reconfigurable spiking neural network digital ASIC simulation and implementation


    Beteiligte:


    Erscheinungsdatum :

    01.07.2009


    Format / Umfang :

    1540198 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Spiking Neural Network-based Flight Controller

    Arana, Diego Chavez / Garcia A., Omar A. / Garcia Carrillo, Luis Rodolfo et al. | IEEE | 2024


    Spiking Neural Network E-Nose classifier chip

    Abdel-Aty-Zohdy, H S / Allen, J N / Ewing, R L | IEEE | 2010


    Unterhaltungselektronik: ASIC fur Digital Radio Mondial

    British Library Online Contents | 2007


    An ASIC Digital Video Processing Library

    Tomasino, A. / Kruse, S. / Kelly, F. | British Library Online Contents | 1991


    Cognitive processing using spiking neural networks

    Allen, Jacob N. / Abdel-Aty-Zohdy, Hoda S. / Ewing, Robert L. | IEEE | 2009