The battery voltage prediction is critical to model predictive controls for the safe and efficient operation of battery systems. This paper presents a comprehensive study using a long-short-term-memory-based method to predict the battery voltage with past voltage and forecasted current and SOC information. Unlike prior art using many-to-one architecture, a many-to-many architecture was used with test data representing three temperatures. Battery-controller-accessible inputs were also selected. Further, the effectiveness of normalization for voltage prediction was investigated. The results show the temperature has no noticeable impact on the prediction accuracy. The lowest RMSE obtained from the 0 °C case is 0.0997. With having both inputs and output already on a similar scale, applying data normalization didn't provide any consistent accuracy improvement across the three selected temperatures.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Battery Voltage Prediction Using Neural Networks


    Beteiligte:
    Zhu, Di (Autor:in) / Campbell, Jeffrey Joseph (Autor:in) / Cho, Gyouho (Autor:in)


    Erscheinungsdatum :

    21.06.2021


    Format / Umfang :

    1447127 byte




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Battery terminal voltage prediction

    LEE TAE-KYUNG | Europäisches Patentamt | 2018

    Freier Zugriff

    Battery Terminal Voltage Prediction

    LEE TAE-KYUNG | Europäisches Patentamt | 2017

    Freier Zugriff



    A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

    ZHU, DI / Cho, Gyouho / Campbell, Jeffrey | SAE Technical Papers | 2021